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Abstruct 

The static and spherically symmetric Morris-Thorne traversable wormhole solutions in the presence of 
cosmological constant are analyzed. We matched an interior solution of a spherically symmetric traversable 
wormhole to a unique exterior vacuum solution at a junction surface. The surface tangential pressure on the thin 
layer of shell is deduced. The specific wormhole solutions are constructed with generic cosmological constant.  
 
I INTRODUCTION 

Wormholes are handles or tunnels in the spacetime topology connecting two separate and distinct regions 
of spacetime. These regions may be part of our Universe or of different Universes. The static and spherically 
symmetric traversable wormhole was first introduced by Morris and Thorne in their classic paper [1]. From the 
stand point of cosmology,the cosmological constant Λ, served to create a kind of repulsive pressure to yield a 
stationary Universe. Zel’dovich [2] identified Λ with the vacuum energy density due to quantum fluctuations. 
Morris-Thorne wormholes with a cosmological constant Λ have been studied extensively, even allowing Λ to be 
replaced by a space variable scalar field. These wormholes cannot exist, however, if Λ are both space and time 
dependent. Such a Λ will therefore act as a topological censor. 

In this article, we introduce an exact black hole solution of the Einstein field equations in four dimensions 
with a positive cosmological constant to electromagnetic and conformally coupled scalar fields. This solution is 
often called a Martinez-Troncoso-Zanelli (MTZ) black hole solution. In agreement with recent observations [3], this 
black hole only exists for a positive cosmological constant Λ, and if a quartic self-interaction coupling is considered. 
Static scalar field configurations such as those presented here, which are regular both at the horizon as well as 
outside, are unexpected in view of the no-hair conjecture [4]. The conformal coupling for the scalar field is the 
unique prescription that guarantees the validity of the equivalence principle in curved spacetime [5]. In the literature, 
a number of traversable wormhole solutions with cosmological constant are available [6-21]. A general class of 
wormhole geometries with a cosmological constant and junction conditions was analyzed by De Benedictis and Das 
[9], and further explored in higher dimensions [10]. It is of interest to study a positive cosmological constant, as the 
inflationary phase of the ultra-early universe demands it, and in addition, recent astronomical observations point to 

0>Λ . Lobo [12], with the intension of minimizing the exotic matter used, matched a static and spherically 
symmetric wormhole solution to an exterior vacuum solution with a cosmological constant, and he calculate the 
surface stresses of the resulting shell and the total amount of exotic matter using a volume integral quantifier [13]. 
The construction of traversable wormhole solutions by matching an interior wormhole spacetime to an exterior 
solution, at a junction surface, was analyzed in [13-15]. A thin-shell traversable wormhole, with a zero surface 
energy density was analyzed in [15], and with generic surface stresses in [14]. A general class of wormhole 
geometries with a cosmological constant and junction conditions was explored in [9], and a linearized stability 
analysis for the plane symmetric case with a negative cosmological constant is done in [17]. 

Morris-Thorne wormholes, with  Λ = 0, have two asymptotically flat regions spacetime. By adding a 
positive cosmological constant 0>Λ , the wormholes have two asymptotically de-Sitter regions, and by adding a 
negative cosmological constant, 0<Λ , the wormholes have two asymptotically anti-de Sitter regions. We 
analyze asymptotically flat and static traversable Morris-Thorne wormholes in the presence of a cosmological 
construct. An equation connecting the radial tension at the mouth with the tangential surface pressure of the thin-
shell is derived. The structure as well as several physical properties and characteristics of traversable wormholes due 
to the effects of the cosmological term are studied.  

This article is organized as follows: In Sec. II we studied Einstein’s field equations and total stress-energy 
with a cosmological constant Λ. In Sec. III, we introduce an exact black hole solution with electromagnetic and 
conformally coupled scalar fields. The junction conditions and the surface tangential pressure are discussed in Sec. 
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IV. Specific construction of wormhole with generic cosmological constant is discussed in Sec. V. Finally, 
conclusion of the results is given in Sec. VI.  

 
II EINSTEIN’S FIELD EQUATIONS AND SURFACE STRESSES WITH A COSMOLOGICAL 

CONSTANT Λ 
a) Form of the Spacetime Metric 

The interior spacetime metric for the wormhole in the static and spherically symmetric isotropic coordinate 
( φθ ,,, rt ), is given by [1] 

 )sin(
)(1

2222
2

2)(22 φθθ ddr

r
rb

drdteds r ++






 −

+−= Φ
,   (1) 

where )(rΦ is denoted as the redshift function, for it is related to the gravitational redshift and  )(rb  is called the 
form function, as it determines the shape of the wormhole; both are functions of the radial coordinate. For the 
traversable wormhole, one must demand that there are no horizons present, which are identified as the surfaces with 

02 →Φ−e , so the )(rΦ  must be finite everywhere. The radial coordinate has a range that increases from a 

minimum value at 0r , corresponding to the wormhole throat to a . Maximum value of a  corresponding to the 

mouth at 0r  one has to join smoothly this spherical volume to another one copy with r ranging again from 0r  to a . 
In addition, one has then to join each copy to the external spacetime from a  to ∞ , as will be done.  

The details of subsequent mathematics and of physical interpretations will be simplified using a set of 
orthonormal basis vectors as the proper reference frame, the observers remain at rest in this coordinate system 
( φθ ,,, rt ), with ( φθ ,,r ) constant. The basis vectors in this coordinate system are denoted by φθ eeee rt ,,, . The 
transformation of these basis vectors from the proper reference frame to a boosted frame is as follows: 

tt eee φ−= ,             ( ) rr erbe 21
ˆ 1−=       

θθ ere 1
ˆ

−=         and    ( ) φφ
θ ere 1

ˆ sin −= .     (2) 

In this basis the metric coefficients assume on their standard, special relativity forms are given by 
( )1,1,1,1. ˆˆˆˆˆˆ −=== diageeg νµνµνµ η .                   (3) 

In the orthonormal reference frame, the Einstein field equation with a generic cosmological constant can be written 
as  

 νµνµνµ πη ˆˆˆˆˆˆ 8 TGG =Λ+ .                      (4) 
b) The Total Stress-Energy Tensor with a Cosmological Constant 

One may write the Einstein field equation with a cosmological constant in the following manner;  

 
( )( )vacTTGG νµνµνµ π ˆˆˆˆˆˆ 8 += ,                     (5) 

where ( ) ( )( )GgT vac πνµνµ 8ˆˆˆˆ Λ−= , is the stress-energy tensor associates with the vacuum, and in the orthonormal 
reference frame is given by  
 ( ) ( ) ( ) ( ) ( )[ ]GGGGdiagT vac ππππνµ 8888ˆˆ ΛΛ−Λ−Λ= .                  (6) 

For the metric (1), the non-zero components of the Einstein tensor in the orthonormal reference frame can 
be written as [1] 

 2ˆˆ r
bG tt

′
= ,          (7) 

 
rr

b
r
bG rr

Φ′






 −+−= 123ˆ ,                                               (8) 
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Using the Einstein field equations with a non-zero cosmological constant in an orthonormal reference frame, we 
obtain the following stress-energy scenario                                                                                                                                                 
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where )(rρ  is the energy density, )(rτ  is the radial tension, )(rp  is the pressure measured in the lateral 
directions, orthonormal to the radial direction. 

We obtain the equation for τ ′  by taking the derivative of Eq. (11) with respect to the radial coordinate r 
and eliminating b′  and Φ′′ , given in Eqs. (10) and (12), respectively, 

( ) ( )τρτρτ +−Φ′−=′
r

c 22 .                                                     (13) 

Equation (13) is known as the relativistic Euler equation or the hydrostatic equilibrium equation for the material 
threading the wormhole. This equation can also be obtained using the conservation of the stress-energy tensor 

0ˆˆ
; =νµT , putting r=′µ . The conservation of the stress-energy tensor can also be deduced from the Bianchi 

identities, which are equivalent to 0ˆˆ
ˆ; =νµ
νG . 

 
III EXTERIOR SOLUTION WITH GENERIC Λext 

The exterior vacuum solution of Einstein field equations is given by  
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where ∞<≤ r0 . This is the solution of de-Sitter black hole with a conformally coupled scalar field and also 
known as MTZ solution. The scalar field is given by  

GMr
MGr

−
=

π
φ

4
3)( .                      (15) 

The MTZ solution exists only for a dimensionless constant, GΛ−= πα
9
2

, and describe a static and 

spherically symmetric black hole with a positive cosmological constant Λ. The mass of the black hole satisfies 

4/0 lGM >> , where l is the cosmological radius and is given by extl Λ= /3 . The inner, event and 

cosmological horizon satisfies lrlrGMr c <<<<<< +− 2/0 , where  

 ( )lGMlr /411
2

++−=− ,       (16) 

 ( )lGMlr /411
2

−−=+ ,       (17) 

 ( )lGMlr /411
2

−+=++ .                     (18) 

The solution (14) have singularities at the radii ( )lGMlr /411
2

−±=±  . brrr == +  can be 

considered as the event horizon of the vacuum black hole solution, but since the wormhole matter will fill region up 
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to a wormhole radius a  superior than br . This radius does not enter into the problem. For the same reason, −= rr , 

the inner event horizon of the black hole is not considered in the present problem. So crrr == ++  can be regarded 
as the position of the cosmological event horizon of the de-Sitter spacetime. Keeping Λext fixed, if one increases M, 

+= rr  will increase and ++= rr  will decrease. For the maximum allowed value of the mass, 1)4( −= GlM , the 

black hole event horizon and cosmological horizon are same i.e., 2/lrr == +++ . In the case of vanishing 
cosmological constant Λext = 0, the geometry of the extreme Reissner-Nordström metric  

( )22222
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2 sin11 φθθ ddrdr
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 −−=

−

,  (19) 

which has coalesced inner and event horizons at GMrr == −+ . For the massless case, 0=M , the black hole 
geometry in de-Sitter spacetime and the metric takes a simple form 
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For 0→Λext , the de-Sitter metric tends to the Minkowskian spacetime.   
 
IV JUNCTION CONDITIONS   

In order to match the interior and exterior matrices, one needs the boundary surface S that connects them. 
The first condition is that the metric must be continuous at S , i.e., S

ext
S gg µνµν =int . This condition is not sufficient 

to join different spacetimes. The second condition for making the match can be done directly with the field equation, 
due to the spherically symmetric. We can use the Einstein field equations, Eqs. (7), (8) and (9), to determine the 
energy density and stresses of the surface necessary to have a match between the interior and exterior solutions. 
When there is null stress-energy terms at S, we can say that the junction is a boundary surface. On the other hand, if 
surface stress-energy terms are present, the junction is called the thin-shell.  

Since both the inside and outside matrices are spherically symmetric, the components θθG  and φφG  are 

already continuous, and therefore one is left with imposing the continuity ttG  and rrG , these can be written as 

ar
ext
ttartt gg == =int  and ar

ext
rrarrr gg == =int . At ar = , with int

ttg  and int
rrg  being the metric components for the 

interior region at ar = , and ext
ttg  and ext

rrg  the exterior metric components for the vacuum solution at ar = . We 
are considering the interior solution Eq. (1) and the MTZ exterior solution Eq. (14) matched at surface, S. The 
continuity of the matrices then give generically )()(int aa extΦ=Φ  and )()(int abab ext= . Now comparing Eqs. 
(1) and (14), the red shift and shape functions can be written as  
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3
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2)( a

a
MGGMab extΛ

+−= .                    (22) 

We consider a particular choice in which the static interior observer measures zero tidal forces, i.e., .int const=Φ  

and 0int =Φ′ . Since the shell is infinitesimally thin in the radial direction, so there is no radial surface pressure. 

Therefore we are left with a surface energy density σ  and a surface tangential pressure P . 
At the boundary S , the stress-energy tensor νµ ˆˆT  is proportional to a Dirac delta function, so one can write 

( )artT ˆˆˆˆˆˆ −= δνµνµ . To find νµ ˆˆt we then use 
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( ) rdartGrdG ˆˆˆ8ˆ ˆˆˆˆ −= ∫∫
+

−

+

−
δπ νµνµ ,               (23) 

where ∫
+

−

 means an infinitesimal integral through the shell. Now using the property of the δ function 

( )( ) ( )[ ] ( )xxfxf δδ ′= /1 , and ( ) ( ) ( )00 xgxxxg =−∫
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δ , we find   
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 We see that 2ˆˆ r
bG tt

′
=  only depends on the first derivative of the metric, which are continuous for interior and 

exterior solutions. Thus, since the integral gives the value of the metric on the exterior side ),( sayb+  minus the 

value of the metric on the interior side ),( sayb− , it gives zero, and one finds 0=σ . 

In Eq. (9) we see that θθ ˆˆG has an important term ( )[ ]Φ ′′− rb /1 , the other terms in this equation 
depend at most on the first derivative and do not contribute to the integral. From Eq. (23), we obtain 

( ) +
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This equation can be written more explicitly as  

2
2

2
2

22

3
1

3
8

1

r
a

GM

a
a
MG

a
GM

Ga
P

ext

ext

Λ
−






 −

Λ
−−

=
π

.     (26) 

One can obtain the matching equation of the radial pressure across the junction boundary of the thin-shell. 
This is done by considering two general solutions of Eq. (1), and an interior and exterior solutions matched at the 
junction surface. The radial component of the Einstein Eq. (11), provides us 

,12)(8 intint
intint3
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brG
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
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
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At the junction boundary, one has obtained )()(int aa extΦ=Φ  and )()(int abab ext= . For simplicity, we are 

considering 0)(int =Φ′ a . From Eq. (21) we have 
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Using Eqs. (29) and (26), we verify that Eqs. (27) and (28) provide us with an equation which governs the behavior 
of the radial tension at the boundary, namely 
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1)( a
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where we have put 2
2

)(

3
1 a

a
GMe exta Λ

−





 −=Φ  . This equation relates the radial tension at the surface with 

the tangential pressure of the thin-shell. 
 

V SPECIFIC CONSTRUCTION OF WORMHOLE WITH GENERIC Λ  
To construct a specific wormhole solutions with generic cosmological constant Λ , we briefly discuss the 

two cases 0=Λext , 0>Λ ext . The specific wormhole solutions are given below. 

a) Specific Traversable Wormhole Solution with 0=Λext  

a.1) Junction with 0=P  
With the junction having the tangential pressure, 0=P , we consider a matching of an interior solution to 

an exterior MTZ solution, so we have 0=extτ  and 23 lext =Λ . In the case of the boundary surface, i.e. 0=P , 

we obtain 0=Λ ext . Thus there is no wormhole solution with 0=P . 

a.2) Junction with 0≠P  
Again we consider a matching of the interior solution to an exterior MTZ solution with the tangential 

pressure of the junction, 0≠P , we have 0=extτ  and 0=Λ ext . At the junction of the shell, the behavior of the 
radial tension is given by Eq. (30) and considering Eq. (22) we find the shape function at the junction simply 

reduces to 
a
MGGMab

22

2)( −= . For different wormhole solutions, we shall consider various choice of the 

shape function )(rb . 
1. First we consider the wormhole solution for the functions 

( ) 21)( rrrb o=   ; 0)( Φ=Φ r .     (31) 

where 0r  is the throat radius of the wormhole. The Einstein field equations are given by   
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In this case the energy density ρ  can be positive or zero, depending on the value of the internal cosmological 

constant intΛ . The throat radius of the wormhole after matching the shape functions 
a
MGGMab

22

2)( −=  and 
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( ) 21
0)( rrrb =  must be greater than the black hole radius. The constant 0φ  must satisfy 

2
2 10 






 −=Φ

r
GMe  and 
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while the exterior metric,  ∝≤≤ ra , is the MTZ solution (14). 
2. Second specific wormhole solution is  

r
r
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0)( = ;              0)( Φ=Φ r ,      (36) 

where  0r  is the throat radius of the wormhole. The Einstein field equations are given by   
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In this case the energy density ρ  can be positive or zero, depending on the value of the internal cosmological 

constant intΛ .  

The radius of the wormhole throat after matching the two shape functions 
a
MGGMab
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GMe . To find the interior 

metric of the wormhole, we must impose the condition, arr ≤≤0 , and this is given by  
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The exterior metric, ∞≤≤ ra , is the MTZ metric (14). 

b) Specific Traversable Wormhole Solution with 0>Λext  

b.1) Junction with 0=P  

Now we shall consider the matching of an interior solution to an exterior MTZ solution, 0=extτ   and 0>Λext , at a 

boundary surface, 0=P . One may obtain Eq. (30) that holds the following condition 

 extGG
a Λ=Λ+

ππ
τ

8
1

8
1)( intint ,       (41) 

at the boundary surface. Now in view of Eq. (41), we have 3)( aab extΛ= .  We shall consider identical shape 
functions as in the previous section. 
1. First specific wormhole solution for the following functions: 
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 21
0 )()( rrrb = ;                0)( Φ=Φ r .      (42) 

From matching the shape functions 3)( aab extΛ=  and 21
0 )()( rrrb = , one can find the radius of the wormhole 

and this radius must be greater than the black hole radius. Moreover, the constant 0φ  must satisfy the red shift 
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The rescaling exterior metric, ∞≤≤ ra , is the same as exterior solution of MTZ black hole (14). 
2. The second specific wormhole solution is 
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The radius of the wormhole after matching the shape functions 3)( aab extΛ=  and 
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the black hole radius. In the case, the red shift function takes the form 

2

2

2
2 10 






 −+−=Φ

r
GM

l
ae  and 

the rescaling interior metric is 
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The exterior metric, ∞≤≤ ra ,, is same as the MTZ solution (14). 
 
IV CONCLUSIONS 

We have studied Morris-Thorne static traversable wormhole with a generic positive cosmological constant 
Λ  by matching the internal and external geometries of two black solutions. In the internal region we impose a 
appropriate geometry to obtain a spherically symmetric traversable wormhole, while, in exterior region we use MTZ 
black hole solution. The surface tangential pressure with the surface energy density of the exotic matter is located at 
the throat of the wormhole. To match a vacuum exterior solution with interior solution, we have deduced an 
equation for the tangential surface pressure and another one which influences the behavior of the radial tension at 
the boundary. 

We see that there is no wormhole solution with zero tangential pressure at 0=p , it form a boundary 
surface. The wormhole solutions are obtained with non-zero tangential pressure, i.e., 0≠p . We  briefly we 
represent some specific solutions of the traversable wormholes for different choices of the shape functions of the 
wormhole. 
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